Fall 2014 MATH 24 Linear Algebra Midterm Exam II

Instructions:

(1) Exam time: 169 hours.
(2) There are 10 problems in this exam and they are graded 2 points each.
(3) You can use books or existing internet resources, but you are not allowed to receive help from a human-being, either in person or via internet.
(4) All notations are standard.

Problem 1. Find a matrix $A \in M_{3 \times 3}(\mathbb{R})$ such that $A^{2014}=2014 A$ but A^{i} is not a scalar multiple of A for $i=2,3, \ldots, 2013$.

Problem 2. Let A, B be $n \times n$ matrices such that $\operatorname{rank}(A)+\operatorname{rank}(B)<n$. Show that A and B must have a common eigenvalue and a common eigenvector.

Problem 3. Let T be a linear transformation on a finite dimensional vector space V. Show that T is invertible if and only if it always maps a basis to a basis.

Problem 4. If an $n \times n$ matrix X commutes with every $n \times n$ matrix, i.e., $X Y=Y X$ for every $Y \in M_{n \times n}(F)$, show that X must be $k I_{n}$ for some scalar $k \in F$.
Problem 5. A matrix A is symmetric if $A=A^{t}$ and skew-symmetric if $A=-A^{t}$. Show that every matrix is a unique sum of the form $B+C$ where B is symmetric and C is skew-symmetric if and only if the scalar field does not have characteristic 2 .

Problem 6. Let V be a n-dimensional vector space. Let T be a linear transformation from V to V, and let v be a vector in V. Show that if the whole space V is generated by $\{v, T(v), T(T(v)), T(T(T(v))), \ldots\}$, then it is generated by the first n elements of this list of vectors, i.e., by $\left\{v, T(v), T(T(v)), T(T(T(v))), \ldots, T^{n-1}(v)\right\}$.

Problem 7. Let V and W be finite-dimensional vector spaces. Let T and U be linear transformations from V to W. Show that there is a linear transformation $S: V \rightarrow V$ such that $T \circ S=U$ if and only if the range of U is a subspace of the range of T.

Problem 8. If $A^{2}=A$, we call A an idempotent matrix. Show that every square matrix M can be written as a product of two matrices $M=P A$ where P is invertible and A is idempotent.

Problem 9. Let $A, B \in M_{2 \times 2}(\mathbb{R})$ such that $A B=B A$. Prove or disprove: A and B have a common eigenvector.

Problem 10. Let f be a linear transformation from $M_{2 \times 2}(\mathbb{R})$ to \mathbb{R} such that for all $A, B \in M_{2 \times 2}(F), f(A B)=f(B A)$, and $f\left(I_{2}\right)=2$. Prove or disprove: f must be the trace function.

